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Abstract
We investigate the macroscopic quantum tunnelling of a 7Li condensate. Within
the effective Lagrangian framework provided by the time-dependent variational
principle approach, we find bounce solutions and explicitly calculate the decay
rate of the condensate trapped in a cylindrically symmetric potential. In
particular, in the case where the number of condensed bosons is slightly below
a certain critical number, we present a detailed analysis of the bounce solutions
and discuss the approximations employed in our calculations. The effects of
finite temperatures and the shape of the trapping potential are evaluated.

PACS numbers: 0375F, 0365

(Some figures in this article are in colour only in the electronic version; see www.iop.org)

1. Introduction

Macroscopic quantum tunnelling is an interesting subject in many areas of physical sciences
including low-temperature physics, atomic physics and nuclear physics. Recent realization of
the Bose–Einstein condensate of trapped alkali atoms may provide a good testing ground for
the investigation of this problem [1].

In this paper we will discuss the macroscopic quantum tunnelling of a 7Li condensate.
The dynamics of the condensate is successfully described by the Gross–Pitaevskii (GP)
equation [2, 3]. The s-wave scattering length a entering the GP equation can be positive
or negative, its sign and magnitude depending crucially on the details of the atom–atom
interaction. In the case of 7Li, the interaction is attractive and the scattering length is known
to be a = −1.45 ± 0.04 nm [4,5]. The attractive interaction causes the condensate to collapse
upon itself. When the trapping potential is included, however, the destabilizing influence of
the interaction is balanced by the zero-point kinetic energy, thereby allowing a metastable
condensate to form [6–8]. Pérez-Garcı́a et al [6] have investigated the GP equation by using
a time-dependent variational technique [9, 10]. Their results reproduce quite accurately the
low-energy excitation spectrum of the condensate obtained by numerical simulations of the
GP equation. We will apply this variational technique to the macroscopic tunnelling of

0305-4470/01/122643+13$30.00 © 2001 IOP Publishing Ltd Printed in the UK 2643



2644 Y Yasui et al

the metastable condensate of 7Li. When the trapping is spherically symmetric, Ueda and
Leggett [11] have evaluated the tunnelling decay rate at zero temperature (see also [7,12]). In
this paper we develop their analysis and explicitly write down the decay rate in the case of a
cylindrically symmetric trapping potential and further finite temperatures.

In section 2, according to [6], we derive an effective Lagrangian describing the Bose–
Einstein condensate of 7Li, and summarize the data of the ground-state energy that we shall
need in the calculations of tunnelling. In section 3, we present a detailed analysis of bounce
solutions. Using the effective Lagrangian and with the help of numerical simulations, we find
the bounce solutions. We next consider the special situation where the number of condensed
bosons is slightly below a certain critical number. Then the effective Lagrangian reduces to
a simple one-dimensional Lagrangian by appropriate approximations. We present an analytic
solution for the bounce within this situation, and explicitly calculate the decay rate of the
metastable condensate. We also evaluate the decay rate at finite temperatures and predict a
critical temperature, where the rate crosses over from quantum tunnelling to thermal hopping.
Section 4 is devoted to the summary of our findings.

2. Model

We consider gases of 7Li atoms trapped in a cylindrically symmetric harmonic potential

V (x, y, z) = 1
2mν

2(x2 + y2 + λ2z2) (1)

where λ represents the asymmetry parameter of the trapping potential. The dynamics of the
condensate is described by the GP Lagrangian

L = ih̄

2

(
ψ
∂ψ∗

∂t
− ∂ψ

∂t
ψ∗
)

− h̄2

2m
| � ψ |2 − V |ψ |2 − 2πh̄2a

m
|ψ |4. (2)

In order to obtain the evolution of the condensate wavefunction, we assume the Gaussian
form for the wavefunction according to [6]:

ψ(x, y, z, t) = A(t)
∏

a=x,y,z
exp

[
− (xa − ηa(t))2

2Wa(t)2
+ ixaαa(t) + ix2

aβa(t)

]
. (3)

This trial function includes the time-dependent variational parameters, η = (ηx, ηy, ηz)

(centre coordinate), W = (Wx,Wy,Wz) (width) and the phase parameters α = (αx, αy, αz),
β = (βx, βy, βz), which correspond to the ‘momenta’ canonically conjugate to η and W . The
wavefunction ψ is normalized by the number of condensed bosons N = ∫ |ψ |2 d3x, so that
the parameter A (amplitude) is given by

A = 1

π3/4

√
N

WxWyWz

. (4)

Substituting (3) into (2) and further integrating the GP Lagrangian over space coordinates, one
obtains an effective quantum mechanical Lagrangian

Leff =
∑

a=x,y,z
(paη̇a +KaẆa)− Heff(ηa,Wa, pa,Ka) (5)

where pa and Ka are the momenta canonically conjugate to ηa andWa defined by

pa = h̄N(αa + 2ηaβa) (6)

Ka = h̄NβaWa. (7)
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The Hamiltonian Heff = H0 + H1 consists of two parts: the first part H0 simply describes the
harmonic oscillation of the centre of the condensate

H0 =
∑

a=x,y,z

1

2mN
p2
a +

Nmν2

2
(η2
x + η2

y + λ2η2
z ) (8)

and the remaining part H1 describes the evolution of the widths of the condensate

H1 =
∑

a=x,y,z

1

mN
K2
a + Û (W ) (9)

with

Û (W ) = mNν2

4
(W 2

x +W 2
y + λ2W 2

z ) +
h̄2N

4m

(
1

W 2
x

+
1

W 2
y

+
1

W 2
z

)
+
ah̄2N2

√
2πm

1

WxWyWz

. (10)

It is convenient to introduce the scales characterizing the trapping potential: (a) length scale
a0 = √

h̄/mν, (b) energy scale e0 = h̄ν/2, (c) timescale ν−1. By using these units we define
dimensionless quantities, ξ = a−1

0 η,X = a−1
0 W and τ = νt . Then the Lagrangian (5) is

rescaled as follows:

Leff = e−1
0 Leff = L0 + L1 (11)

where

L0 = N

(
dξ

dτ

)2

−N(ξ 2
x + ξ 2

y + λ2ξ 2
z ) (12)

and

L1 = N

2

(
dX

dτ

)2

−NU(X) (13)

U(X) = 1

2
(X2 + Y 2 + λ2Z2) +

1

2

(
1

X2
+

1

Y 2
+

1

Z2

)
+

P

XYZ
(14)

with P = √
2/πNa/a0 < 0. We now focus our attention on the ground-state energy of the

condensed Bose system. Under the present analysis, the ground-state energy can be calculated
by finding the critical points of U and the eigenvalues of the Hessian matrix

F =




∂2U

∂X∂X

∂2U

∂X∂Y

∂2U

∂X∂Z

∂2U

∂Y∂X

∂2U

∂Y∂Y

∂2U

∂Y∂Z

∂2U

∂Z∂X

∂2U

∂Z∂Y

∂2U

∂Z∂Z


 (15)

evaluated on the critical points.

2.1. Critical points

The critical points are given by the solutions to ∂U/∂X = 0. They satisfy the equations

X = Y (16)
1

Z4
+

P

X2Z3
= λ2 (17)

1

X4
+
P

X4Z
= 1. (18)
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Figure 1. λ-dependence of P ∗ and X∗ = (X∗, Y ∗, Z∗).

The solutions are classified by the critical value P ∗ of the parameter P ; when |P | > |P ∗|,
there are no critical points. When |P | < |P ∗|, there are two critical points, one stable
(Morse index = 0) and the other unstable (Morse index = 1) [6]. The critical value P ∗

also satisfies in addition to the equations (16)–(18)

P

X2Z3
+

1

2

P 2

X6Z4
= 4λ2 (19)

which can be derived from the condition εT = 0 (see (24)). Thus, P ∗ and the corresponding
coordinate X∗ = (X∗, Y ∗, Z∗) are uniquely determined as a function of the asymmetry
parameter λ. Indeed we have P ∗ = −4/55/4, X∗ = 5−1/4(1, 1, 1) for λ = 1, and general
solutions are provided in figure 1. It should be noticed that for P → P ∗ the stable critical
point Xs and the unstable critical point Xu take the following asymptotic forms:

Xs = X∗ + k(1 − P/P ∗)1/2E + O(1 − P/P ∗) (20)

Xu = X∗ − k(1 − P/P ∗)1/2E + O(1 − P/P ∗) (21)

where E = (−P ∗
32,−P ∗

32, 1) and the coefficient k is given by

k =
√

2

3

(
P ∗

21(2P
∗
41 − 1)

2λ2(1 − P ∗
41)− P ∗

23

)1
2

(22)

with P ∗
ij = P ∗/4(X∗)i(Z∗)j .

2.2. Eigenvalues of Hessian matrix

For the eigenvalue problem of the Hessian matrix evaluated on the critical points

FeA = ε2
AeA (A = T ,N,B) (23)

we have the following results [6]:
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(a) T -direction

ε2
T = 2

(
λ2 + 1 − P23 −

√
8(P32)2 + (1 − λ2 + P23)2

)
(24)

eT = 1


T

(s�, s�, P32) (25)

with s� = 1
4

(
−λ2 + 1 + P23 −

√
8(P32)2 + (1 − λ2 + P23)2

)
. (26)

(b) N -direction

ε2
N = 2

(
λ2 + 1 − P23 +

√
8(P32)2 + (1 − λ2 + P23)2

)
(27)

eN = 1


N

(s⊥, s⊥, P32) (28)

with s⊥ = 1
4

(
−λ2 + 1 + P23 +

√
8(P32)2 + (1 − λ2 + P23)2

)
. (29)

(c) B-direction

ε2
B = 4(1 − 2P41) (30)

eB = 1√
2
(1,−1, 0). (31)

Here we used the notation

Pij = P

4XiZj
(|P | � |P ∗|) (32)

and


2
T ,N = 2(P32)

2 + 1
4

[
(P23 + 1 − λ2)2 ∓ (P23 + 1 − λ2)

√
8(P32)2 + (1 − λ2 + P23)2

]
(33)

by the normalization eA · eB = δAB . It should be noticed that the eigenvalue ε2
T is positive

(negative) for the stable (unstable) critical point and the other eigenvalues are all positive.

2.3. Ground state

We restrict the condensate wavefunction ψ to the trial function represented by the variational
parameters,

B = {(X, ξ,α,β)|X = Xs +
∑

A=T ,N,B
yAeA and |yA| � 1} (34)

where eA stands for the eigenvector of the Hessian matrix. Then, the GP energy functional
corresponding to (2),

H [ψ] =
∫

d3x

(
h̄2

2m
| � ψ |2 + V |ψ |2 +

2πh̄2a

m
|ψ |4

)
(35)

takes the form

H [ψ] = e0NU(Xs) + e0N

((
dξ

dτ

)2

+ ξ 2
x + ξ 2

y + λ2ξ 2
z

)

+
e0N

2

∑
A=T ,N,B

((
dyA
dτ

)2

+ ε2
A(Xs)y

2
A

)
+ O(y3

A) (36)

where the first term is the potential energy evaluated on the stable critical point Xs, and the
second and third terms represent the harmonic oscillations of the condensate. This result
implies the following approximate ground-state energy:

e−1
0 Eg � NU(Xs) + (2 + λ) +

∑
A=T ,N,B

εA(Xs). (37)
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3. Macroscopic quantum tunnelling

In this section we argue the macroscopic quantum tunnelling of the Bose condensate using the
Lagrangian (13). The stable critical point Xs of the potential U(X) represents a metastable
condensate since the parameter P in U(X) is negative, and so the ground-state energy will
have an (exponentially small) imaginary part in addition to (37) if we take account of the
tunnelling. The decay rate of the metastable condensate is determined from [13]

2 = 2

h̄
ImEg. (38)

We will calculate the decay rate by using the WKB approximation. Since the Lagrangian (13)
includes a macroscopic quantityN representing the number of condensed bosons, we must be
careful in the choice of a small parameter h controlling the validity of the WKB approximation.
The precise value of h is given by (58), and the decay rate is of the form

2 � A exp

(
−Scl

h

)
(39)

where Scl is the Euclidean action evaluated at the bounce solution and A the square root of the
determinant of the second variation around the bounce solution, with the zero mode removed.

3.1. Zero temperature

In order to evaluate the decay rate (39), we use the effective Lagrangian (11). The first termL0

simply describes a harmonic oscillation and so it does not contribute to the decay rate. After
a Wick rotation to an Euclidean time, the relevant action is given by

SE

h̄
= N

2

∫ ∞

−∞
dτ

(
1

2

(
dX

dτ

)2

+ U(X)

)
(40)

where U(X) is the potential given by (14). The bounce solution is the classical solution to the
equations of motion

d2

dτ 2
X −X +

1

X3
+ P

1

X2YZ
= 0 (41)

d2

dτ 2
Y − Y +

1

Y 3
+ P

1

XY 2Z
= 0 (42)

d2

dτ 2
Z − λ2Z +

1

Z3
+ P

1

XYZ2
= 0 (43)

subject to the boundary condition

lim
τ→±∞ X(τ ) = Xs (stable critical point). (44)

In figure 2, we show the behaviour of bounce solutions obtained using numerical simulations.
Let us investigate analytically the system (40) by choosing a parameter P near the critical

value P ∗. Then the bounce solution Xb(τ ) is restricted in the neighbourhood of the stable
critical point Xs. Indeed, the equations (20) and (21) give the estimation

|Xb(τ )− Xs| ∼ |Xs − Xu| ∼ O((1 − P/P ∗)1/2). (45)

In the following text we will assume

δ = 1 − P/P ∗ ∼ 10−3 |P | < |P ∗|. (46)

This parameter region is particularly interesting; as seen later on the value SE/h̄ is of the order
of unity, in this region, though the prefactorN in the action is very large (the number of atoms
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Figure 2. Behaviour of the bounce solution. The bold-faced curve connecting the two points, Xs
(stable critical point) and Xt (turning point) corresponds to the bounce solution. The solid curves
represent the contours of the potential U(X). Parameter values: δ = 1 − P/P ∗ = 0.144 for (a)
and δ = 0.135 for (b).

used in the experiment at Rice University is of the order of 103 [14, 15]). Thus we can expect
to observe the macroscopic quantum tunnelling by experiments.

We now introduce a new coordinate x = (xT , xN, xB) around Xs

X = Xs +
∑

A=T ,N,B
xAeA (47)

and expand the potential

U(X) = U(Xs) + 1
2

∑
A=T ,N,B

ε2
Ax

2
A +

∑
n+m+l=3

cnmlx
n
T x

m
Nx

l
B + · · · . (48)

It should be noticed that the eigenvalue εT approaches zero for δ → 0. Indeed, we can evaluate
the behaviour of εT near P ∗ using the exact formula (24):

εT = αδ1/4 + O(δ3/4) (49)

where

α2 = 4

λ2 + 1 − P ∗
23

√
(−6P ∗

23)(1 − 2P ∗
41)(2λ

2(1 − P ∗
41)− P ∗

23). (50)

On the other hand, eigenvalues εN and εB can be approximated by (27) and (30) evaluated onP ∗,
and these values become extremely large compared with εT when the parameter δ approaches
zero. This means that the direction of the initial (infinitesimal) velocity of the bounce solution is
given by the eigenfunction eT . Thus the trajectory of the bounce solution is mainly described by
x(τ) = xT (τ ), i.e. the T -component of the coordinate x(τ ), and remaining components xN(τ)
and xB(τ) give higher-order corrections. More precisely, using (48) and (49), we can evaluate
the bounce solution as xT (τ ) ∼ O(δ1/2), xN(τ) ∼ O(δ) and xB(τ) = 0 by the symmetry
of the equations of motion (if we specialize to the spherically symmetric trapping potential,
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Figure 3. Potential profile for δ → 0. The potential Û (W ) given by (10) is approximated by a
one-dimensional potential Û (R) = e0N((ε

2
T /2)x

2 + (c/3!)x3)with R = a0x. The potential Û (R)

has a metastable minimum at R = 0 and a barrier of height U0 = Û (Rm), Rm = 2a0ε
2
T /|c|.

the N -component xN(τ) exactly vanishes). We now approximate (40) by one-dimensional
quantum mechanical action:

SE

h̄
� N

2

∫ ∞

−∞
dτ

(
1

2

(
dx

dτ

)2

+
1

2
ε2
T x

2 +
c

3!
x3

)
. (51)

From (25) and (26), the coefficient c(< 0) is given by

c = 1


3
T

{
2s3

�

(
∂3U

∂X3
+ 3

∂3U

∂X2∂Y

)
+ P 3

32
∂3U

∂Z3
+ 18s2

�
P32

∂3U

∂X∂Y∂Z
+ 6s�P

2
32
∂3U

∂X∂Z2

} ∣∣∣∣
X=Xs

(52)

which takes the following asymptotic form:

c = −12(P ∗
24 + 4P ∗

41P
∗
24 − 2λ2P ∗

42)(1 + 2(P ∗
32)

2)−3/2 + O(δ1/2). (53)

It is convenient to introduce new scales characterizing the quantum tunnelling: according to
figure 3 we define

(a) length scale R0 = 3a0ε
2
T

|c| = 3a0α
2

|c| δ1/2(1 + O(δ1/2)) (54)

(b) energy scale U0 = Nh̄νε6
T

3c2
= Nh̄να6

3c2
δ3/2(1 + O(δ1/2)). (55)

Then we have a natural timescale

T0 = R0

(2U0/Nm)1/2
= ω0

να
δ−1/4(1 + O(δ1/2)) ω0 =

√
27

2
(56)

representing the ‘tunnelling time’.
Now the action (51) is of the form

SE

h̄
= 1

h

∫ ∞

−∞
ds

(
1

2

(
dq

ds

)2

+ Ũ (q)

)
Ũ (q) = 1

2ω
2
0q

2(1 − q) (57)

where we have used rescaled quantities, q = (a0/R0)x and s = (1/νT0)τ . The prefactor
(effective Planck’s constant)

h = h̄

U0T0
= 2ω0c

2

9Nα5
δ−5/4(1 + O(δ1/2)) (58)
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Figure 4. (a) λ-dependence of the functions A and B, and (b) the detail of B(λ) in the region of
λ = 1.

is a dimensionless parameter controlling the validity of the WKB approximation. The equations
of motion associated with (57) can be easily integrated, yielding the well known bounce solution

qb(s) = sech2
(ω0s

2

)
. (59)

Using the WKB approximation [13], we obtain the decay rate

20 =

4

√
ω3

0

πh
exp

(
−Scl

h

) (1 + O(h))T0
−1 (60)

with the bounce action Scl = 8
15ω0. It follows from (56) and (58) that for δ → 0 the leading

contribution to 20 is given by
20

ν
� A

√
Nδ7/8 exp(−BNδ5/4). (61)

Here, the coefficients A and B are functions of the asymmetry parameter λ:

A = 4

√
9

2π

α7/2

|c| B = 12α5

5c2
(62)

which can be calculated by (50) and (53). Figure 4 shows the λ-dependence of these
coefficients. The spherically symmetric trapping potential (λ = 1) minimizes the function B
and its value is 4.58 in excellent agreement with the result of [11]. The functions A,B remain
relatively constant for λ < 1 but they grow for λ > 1. For δ → 0 the tunnelling exponent and
the prefactor vanish according to δ5/4 and δ7/8, respectively [11, 12]. We find that this scaling
law is universal, independent of the shape of the harmonic trapping potential.

3.2. Finite temperature

In the case of finite temperature β−1, the bounce solution is given by a periodic solution, i.e.
the classical solution in the potential −Ũ (q) with energy −E(0 < E < 1). From figure 5 the
solution takes the form [16]

qb(s) = q2 − (q2 − q1)sn2
(ω0

2

√
q2 − q0s;m

)
(63)
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Figure 5. Turning points in the potential Ũ (q) = 1
2ω

2
0q

2(1 − q), ω0 = √
27/2. The ‘energy’

E(0 < E < 1) is determined as a function of β by requiring that the motion between the turning
points q1 and q2 is periodic, with period βh.

with the elliptic modulus m =
√
q2−q1

q2−q0
and the period hβ is given by the complete elliptic

integral of the first kind:

hβ = 4

ω0
√
q2 − q0

K(m) K(m) =
∫ 1

0

dx√
(1 − x2)(1 −mx2)

. (64)

This solution reduces, of course, to the previous solution (59) for E = 0. The
corresponding bounce action is evaluated as

Scl =
∫ hβ

0
ds

(
1

2

(
dqb

ds

)2

+ Ũ (qb)

)

= W + hβE (65)

where

W = 4ω0

15

√
q2 − q0[2(q2

0 + q2
1 + q2

2 − q0q1 − q0q2 − q1q2)E(m)

+ (q1 − q0)(2q0 − q1 − q2)K(m)]. (66)

(E(m) is the complete elliptic integral of the second kind.) The fluctuation modes about the
bounce solution include a zero mode φ1(s) = q̇b(s). Then the determinant factor A in (39) is
calculated from the Gelfand–Yaglom formula [17, 18]:

A(β) = 1√
πh

√
φ̇1(s)

φ̇2(s)
sinh (ω0s)

∣∣∣∣∣∣
s=βh/2

φ2(s) = φ1(s)

∫ s ds ′

φ1(s ′)2
. (67)

Thus we obtain the finite-temperature decay rate due to quantum tunnelling:

2(β) =
(
A(β) exp

(−Scl

h

))
(1 + O(h))T −1

0 (68)

where

A(β) =
√
ω3

0

2πh

(q2 − q0)
3/4(q2 − q1)(1 −m2)

(a(m)E(m) + b(m)K(m))1/2
sinh

(
ω0βh

2

)
(69)
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Figure 6. The decay rate 20 as a function of the asymmetry parameter λ for ν = 953 s−1,
a0/a = −2.13 × 103 and δ = 5.0 × 10−3.

with

a(m) = 2(m4 −m2 + 1) (70)

b(m) = (1 −m2)(m2 − 2). (71)

For E → 0, we have (1 − m2) sinh(ω0βh/2) → 8, a(m)E(m) + b(m)K(m) → 2 and

q0, q1 → 0, q2 → 1, so that A(β) → 4
√
ω3

0/πh, which reproduces the zero-temperature
decay rate 20. Let us turn now to the limit E → 1, where the period behaves as

βh = 2π

ω0

(
1 +

5

36
(1 − E) + · · ·

)
. (72)

The leading term gives a crossover temperature β−1
c = hω0/2π [19], i.e. for β−1 > β−1

c the
decay rate is given by the familiar Arrhenuis–Kramers formula [20]. On the other hand, for
β−1 < β−1

c the macroscopic tunnelling through the barrier becomes more probable, and the
decay rate is given by (68). Recalling the energy unit U0 defined by (55) and (58) we find

β−1
c = hω0

2π

(
U0

kB

)
= h̄να

2πkB
δ1/4(1 + O(δ1/2)). (73)

For small (β − βc)/βc > 0, from (65) and (69), we obtain the bounce action

Scl

h
� β − 18

5
βc

(
β − βc
βc

)2

(74)

and

A(β) �
√

8ω3
0

15hπ2
sinh

(
ω0βh

2

)(
1 − 77

20

(
β − βc
βc

)
+

20 867

2400

(
β − βc
βc

)2
)
. (75)
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4. Conclusion

In this paper we have investigated the macroscopic tunnelling of the metastable condensate
of 7Li. When the number of particles in the condensate exceeds a critical value N∗ =√
π/2P ∗a0/a, the metastable condensate no longer exists and the equation giving critical

points has no solutions. In a region extremely close to N∗, i.e. δ = 1 − P/P ∗ � 1, we have
shown that the action takes a rather simple form (57), and explicitly calculated the decay rate
of the metastable condensate using the WKB approximation.

Finally we make some remarks on our results. In order to justify the WKB approximation,
we should choose the effective Planck’s constant h to satisfy the condition h � 1. On the other
hand, for very small h, it is impossible to observe the macroscopic tunnelling; the formula (60)
provides an estimate of the tunnelling decay rate, 20 ∼ O(e−1/h). This implies rather severe
conditions on the parameter δ through the equation (58). If we use the experimental data
at Rice University for the trapping potential [14, 15]; λ � 0.867, a0/a � −2.13 × 103

and ν � 953 s−1, then the conditions are given by h � 2.92 × 10−4 δ−5/4 � 1 and
20 � 8.17 × 105 δ7/8 exp (−6.72 × 103 δ5/4) ∼ O(1) s−1. Consequently, we have a typical
region 3.0 × 10−3 < δ < 7.0 × 10−3. Temperature effects on the tunnelling decay rate are
estimated by using the equations (74) and (75): 2(β) is monotonically decreasing for β > βc
and hence <2 = 2(β)− 20 < 2(βc)− 20. For instance, for δ = 5.0 × 10−3 the decay rate
at zero temperature is 20 � 1.03 s−1 and <2 < 2.79 s−1. The crossover temperature is then
given by β−1

c � 1.02 nK, which may be a realizable temperature in the experiments. The
details of a crossover region have been discussed in [19]; there is a narrow crossover region of
O(h3/2), where the decay rate is given by

2(β)T0 �
√

8ω3
0

15hπ2
sinh

(
ω0βh

2

)
erf

[√
36

5βc
(β − βc)

]
exp

[
−β +

18βc
5

(
β − βc
βc

)2
]

(76)

with erf(x) = (2π)−1/2
∫ x
−∞ dy exp(−y2/2). For very small h � 10−2, this formula

matches smoothly onto (68) and 2(β)T0 = (ω0/2π)[sinh(ω0βh/2)/ sin(ω0βh/2)] exp(−β)
(Arrhenuis–Kramers formula) near βc. However, we cannot apply the formula to the
macroscopic tunnelling since the value of h in our situation is too large. We leave the issue
of the crossover region for future research. The shape of the trapping potential also has some
effect on the behaviour of the decay rate 20: as shown in figure 6, the effect is significant for
the disc-shaped potential (λ > 1), although it is rather small for the cigar-shaped potential
(λ � 1) and 20 is of the order of 10−3 s−1, independent of λ.
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